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Abstract. Total and differential cross-sections for the production of free electron-positron pairs are cal-
culated for the reactions Au79+ (10.8 GeV/u) on Cu29+, Ag47+ and Au79+. The methods used are the
semiclassical approach and the solution of the time-dependent Dirac equation by a coupled channel method
with free wavepakets describing the created fermions. The obtained total cross-sections are in good agree-
ment with the experimental data. The differential cross-sections give informations about the correlation
between the electron and positron.

PACS. 03.65.Pm Relativistic wave equations – 14.60.Cd Electrons (including positrons) –
34.10.+x General theories and models of atomic and molecular collisions and interactions
(including statistical theories, transition state, stochastic and trajectory models, etc.)

1 Introduction

In relativistic heavy ion collisions electron-positron pairs
can be produced. We distinguish the production of free
and bound-free electron-positron pairs. In the first pro-
cess the leptons are created in free states. Bound-free pair
production means that the electron is captured in a bound
state of an ion, while the positron stays free. In this paper
we regard only the free pair production process.

It was shown by Greiner et al. [1], Thiel et al. [2] and
Momberger et al. [3] that the electron-positron pair pro-
duction is a non-perturbative process for highly charged
ions and small impact parameters. Several calculations
exist for the pair production in a non-perturbative for-
malism. Becker et al. [4], Wells et al. [5] and Momberger
et al. [6] solved the time-dependent Dirac equation on a
lattice. The difficulty of this method is that, due to com-
puter capacity reasons, the lattice used can not be chosen
large enough together with a fine grid size. Momberger
et al. [7] and Rumrich et al. [8] used the coupled channel
method for a non-perturbative description. It was shown
by Rumrich et al. [9] and Baltz et al. [10] that the results
of coupled channel calculations are gauge dependent, if a
finite basis set is applied.

Detailed informations on perturbative and non-
perturbative theories for the electron-positron pair pro-
duction can be found in the review article of Bertulani
and Baur [11] and the book of Eichler and Meyerhof [12].

a This work is part of the doctoral thesis of Ralf Tenzer,
Giessen (D26), 1999.

b e-mail: scheid@theo.physik.uni-giessen.de

Stimulated by recent experiments of Claytor et al. [13]
and Belkacem et al. [14] on the pair production, we cal-
culate the total and differential pair production cross-
section in this paper. In order to interpret experiments of
Belkacem [15] we consider reactions with a bare gold
nucleus Au79+ as projectile with a kinetic energy of
10.8 GeV/u scattered at Au79+, Ag47+ and Cu29+ ions.
Differential cross-sections of pair production should yield
more information about the creation process than the
total cross-section and would be a detailed test of the the-
ory for correlations in the production process of electron-
positron pairs.

In Section 2 of this paper we describe our treatment
of the time-dependent Dirac equation with the coupled
channel method and give an expression for the correlation
between the fermions. Section 3 contains the discretisa-
tion of the momentum space with standing wavepakets.
Results are shown and discussed in Section 4.

We measure the energy in MeV, the momentum
in MeV/c, the time in fm/c and the length in fm. In this
units h̄ has the value of 197.3 MeV fm/c. The charge of
the electron is denoted by −e.

2 Theoretical description

The electron-positron pair production is treated with a
semiclassical approach. The nuclear motion and the elec-
tromagnetical field are described classically. The collid-
ing ions are assumed to move on straight line trajectories
in the xz-plane parallel to the z-axis with constant but
opposite velocities ±v0 (v0 > 0) as shown in Figure 1.
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Fig. 1. The ions move in the xz-plane on straight line trajecto-
ries parallel to the z-axis with equal speed but opposite veloc-
ities with an impact parameter b. The target has the velocity
−|v0| and the x-coordinate −b/2 to the z-axis, the projectile
the velocity |v0| and the x-coordinate b/2 to the z-axis.

The corresponding coordinate system is denoted as equal-
speed system. The connection between the Lorentz-factors
of the laboratory frame, where the target nucleus is fixed,
and of the equal-speed system is

γLab = 2γ2 − 1. (1)

The labels “target” and “projectile” are arbitrary in the
equal-speed system, but they help to distinguish between
the two ions. The trajectories are given by

RT,P(t) = ∓(
b

2
ex + v0t ez), (2)

with the impact parameter b. Here and in the following the
indices T and P stand for the target and projectile. The
electromagnetic fields of the ions are given by the Liénard-
Wiechert-potentials (upper sign for the target and lower
sign for the projectile with charge numbers ZT and ZP,
respectively)

Aµ(x) = AT
µ (x) +AP

µ(x) (3)

AT,P
µ (x) = γ

ZT,Pe

4π
(1, 0, 0,∓v0

c
)

1
r′T,P

(4)

with

r′T,P =

√
(x± b

2
)2 + y2 + γ2(z ± v0t)2 (5)

and the four vector x = (ct, r).
The time-development of the lepton-field operator Ψ

is given by

ih̄
∂

∂t
Ψ(x) = (H0 +HI)Ψ(x) (6)

with

H0 = cα · p + βm0c
2, (7)

HI = HT
I +HP

I . (8)

With equation (4) we get

HT,P
I = −γZ

T,Pe2

4π
(1l∓ v0

c
αz)

1
r′T,P

· (9)

We take the fields of both ions as a perturbation. We start
with the expansion of the field operator in free orthonor-
mal discrete states which approximate the positive and
negative continuum, ϕ0

q and χ0
q,

Ψ(x) =
∑
q>F

aq(t) ϕ0
q(x) +

∑
q<F

c+q (t) χ0
q(x). (10)

The Fermi level is F = −m0c
2 and |F 〉 presents the vac-

uum state. The index q characterizes a state with momen-
tum pq and spin quantum number sq. The operators aq
and c+q are time-dependent and fulfill the anticommuta-
tion relations

{aq(t), a+
q′(t)} = δqq′ , {cq(t), c+q′(t)} = δqq′ . (11)

{aq(t), cq′(t)} = {aq(t), c+q′(t)} = 0. (12)

The operators aq, a+
q and cq, c+q are annihilation and cre-

ation operators of free particles in the states ϕ0
q and χ0

q ,
respectively. For the initial time t = −∞ we have

aq(t = −∞)|F 〉 = cq(t = −∞)|F 〉 = 0, (13)

which expresses the fact that no particles are originally
present in the vacuum.

We get the number of produced particles with the vac-
uum expectation value of the particle number operator,
e.g. for an electron in the state “e”:

Ne(t) = 〈F |a+
e (t) ae(t)|F 〉. (14)

We have to know the time behaviour of the creation and
annihilation operators, if we want to evaluate the vacuum
expectation value at all times and especially for t→ +∞.
A second representation of the field operator (10) is ob-
tained by an expansion with time-dependent solutions of
the Dirac equation (6)

Ψ(x) =
∑
q>F

bq ϕq(x) +
∑
q<F

d+
q χq(x). (15)

The wavefunctions ϕq and χq describe the dynamics of the
electron states in the field of the ions. The operators bq
and d+

q are time-independent and fulfill the same anticom-
mutation relations as aq and c+q . The difference between
the time-dependent and time-independent operators is,
that aq and c+q annihilate and create free states, while
bq and d+

q do this with the exact solutions of the Dirac
equation (6). Relations between these operators can be
found from the asymptotic behaviour in time. Asymptot-
ically, for t→ −∞, we demand

ϕq(x) t→−∞−→ ϕ0
q(x), χq(x) t→−∞−→ χ0

q(x). (16)

These relations constitute the initial conditions for the
time-integration of the wave functions ϕq(x) and χq(x)
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with the Dirac equation (6). A comparison of the two
expansions of the field operator (10) and (15) yields for
the operators

aq(t)
t→−∞−→ bq, c+q (t) t→−∞−→ d+

q . (17)

Since we know the asymptotic action of the time-
dependent operators, we find for the time-independent
operators at all times

bq|F 〉 = 0, dq|F 〉 = 0. (18)

Now we expand ϕr and χr in the free states ϕ0
q and χ0

q

ϕr(x) =
∑
q>F

αqr(t)ϕ0
q(x) +

∑
q<F

αqr(t)χ0
q(x), r > F (19)

χr(x) =
∑
q>F

αqr(t)ϕ0
q(x) +

∑
q<F

αqr(t)χ0
q(x), r < F. (20)

Note that the range for the indices q and r defines
the interpretation of the coefficients αqr(t). We insert
the expansions of ϕr and χr into equation (15) and
compare the result with equation (10). This leads to
the following relation between the time-dependent and
time-independent operators

aq(t) =
∑
r>F

αqr(t) br +
∑
r<F

αqr(t) d+
r , q > F (21)

c+q (t) =
∑
r>F

αqr(t) br +
∑
r<F

αqr(t) d+
r , q < F. (22)

The time behaviour of the expansion coefficients αqr is
obtained from the Dirac equation (6). For instance, if we
insert equation (20) into equation (6), we get for r < F

ih̄
∂

∂t
χr(x) = (H0 +HI)χr(x) (23)

l.h.s.: ih̄
[∑
q>F

{
α̇qr(t)ϕ0

q(x) + αqr(t)ϕ̇0
q(x)

}
+
∑
q<F

{
α̇qr(t)χ0

q(x) + αqr(x)χ̇0
q(t)
}]

(24)

r.h.s.: (H0 +HI)
[∑
q>F

αqr(t)ϕ0
q(x) +

∑
q<F

αqr(t)χ0
q(x)

]
.

(25)

Since ϕ0
q and χ0

q solve the free Dirac equation, we obtain
a system of coupled channel equations for the expansion
coefficients αsr(t) with r < F after projection with ϕ0

s

and χ0
s:

ih̄α̇sr(t) =
∑
q>F

〈ϕ0
s(x)|HI|ϕ0

q(x)〉αqr(t)

+
∑
q<F

〈ϕ0
s(x)|HI|χ0

q(x)〉αqr(t), s > F, r < F, (26)

ih̄α̇sr(t) =
∑
q>F

〈χ0
s(x)|HI|ϕ0

q(x)〉αqr(t)

+
∑
q<F

〈χ0
s(x)|HI|χ0

q(x)〉αqr(t), s, r < F. (27)

A similar system of coupled equations can be derived for
αsr(t) with r > F . Since all interesting physical quantities
may already be expressed by αsr(t) with r < F , it is
sufficient to solve equations (26, 27).

The initial conditions of the coefficients of the coupled
channel system can be inferred from equation (17) to be

αqr(t→ −∞) = δqr with r < F for all q. (28)

The interesting vacuum expectation values can be ex-
pressed in terms of the coefficients αqr (r < F ). For the
number of produced electrons in a state ϕ0

e (Eq. (14))
we have

Ne(t) = 〈F |a+
e (t) ae(t)|F 〉

= 〈F |
[∑
r>F

α∗er(t) b
+
r +

∑
r<F

α∗er(t) dr
]

×
[ ∑
r′>F

αer′(t) br′ +
∑
r′<F

αer′(t) d+
r′

]
|F 〉

=
∑
r<F

|αer(t)|2 with e > F. (29)

In the same way we calculate the number of produced
electron-positron pairs with the electron in state e and
the positron in state p

Nep(t) = 〈F |a+
e (t) ae(t) c+p (t) cp(t)|F 〉

...
= Ne(t) Np(t) + |

∑
r<F

α∗er(t) αpr(t)|2

with e > F and p < F. (30)

The correlation of an electron in state “e” and a positron
in state “p” may be defined as

N corr
ep (t) = Nep(t)−Ne(t) Np(t)

= |
∑
r<F

α∗er(t)αpr(t)|2, e > F, p < F. (31)

The product of the expectation values Ne and Np is the
uncorrelated probability to find a pair in a state with the
quantum numbers e and p.

3 Discretisation of the continuum

For the representation of a discrete continuum we proceed
as follows. We divide the momentum space in cubes with
the volume ∆3P . Figure 2 shows the devision of the mo-
mentum space with a maximum momentum of 3 MeV/c.
All cubes with their center in the sphere with the radius
of 3 MeV/c belong to this basis set. To each cube we
attribute standing wavepakets of free states [16,17] of the
positive and negative continuum with a momentum pq, an
energy Eq and with both spin possibilities. For instance
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Fig. 2. Discretisation of the momentum space in equal cubes.
The radius of the momentum sphere determines the maximum
momentum of the states of the basis set.

the standing wavepaket of a positive continuum state is

ϕ0
q(x) =

1√
(2πh̄)3∆3P

√
m0c2

Eq
u(pq, sq)

× e−iEqt/h̄ eipq·x/h̄
∫
∆3P

d3p eip·x/h̄. (32)

The difference to moving wavepakets, also called Weyl
wavepakets, is, that we extract an energy and a spinor cor-
responding to the center point of the cube out of the mo-
mentum integral. This is a good approximation for small
cubes and allows us to calculate the transition matrix el-
ements in the coupled channel equations nearly analyti-
cally. However the standing wavepakets do not solve the
free Dirac equation exactly. We obtain

ih̄
∂

∂t
ϕ0
q(x) = H0 ϕ

0
q(x)− Fq(x) (33)

with an error term

Fq(x) =
c√

(2πh̄)3∆3P

√
m0c2

Eq
u(pq, sq)

× e−iEqt/h̄ eipq·x/h̄
∫
∆3P

d3p α · p eip·x/h̄. (34)

In our calculations we may completely neglect this term.
In the derivation of the coupled channel equations (26, 27)
the error term does not contribute.

Table 1. Total cross-sections (in barn) for the free pair
production in collisions of Au79+ (10.8 GeV/u) on Cu29+,
Ag47+ and Au79+. The experimental data were given to us by
Belkacem [15]. The results of Becker et al. [18] and Ionescu and
Eichler [19] were calculated in first order perturbation theory,
those of Eby [20] in second order perturbation theory.

collision system experiment this work Becker Ionescu Eby

Au79+ + Cu29+ 42 43.44 12 15 23

Au79+ + Ag47+ 85 92.21 31 40 59

Au79+ + Au79+ 180 211.98 87 113 167

4 Results and discussion

We report on calculations for the symmetric system Au79+

on Au79+ and the asymmetric systems Au79+ on Ag47+

and Au79+ on Cu29+ with the kinetic energy of the gold
projectile of 10.8 GeV/u in the laboratory frame on fixed
targets. The states of the basis set used have a maximum
momentum of 3 MeV/c and the width ∆P of the channels
is 1 MeV/c (see Fig. 2). These parameters describe a basis
set with 544 free states. The calculation of a collision with
fixed impact parameter and energy requires 2.5 hours on
a vector computer. The presented results are obtained by
integrating over the impact parameter.

4.1 Total cross-sections

We calculated the total cross-section for the free pair
production for bare gold ions with a kinetic energy of
10.8 GeV/u on bare copper, silver and gold ions. The re-
sults are shown in Table 1. The second column contains
the experimental results of Belkacem [15]. Our calcula-
tions in the third column are in good agreement with
the experimental values. The next three columns give re-
sults obtained in lowest order perturbation theory. Becker
et al. [18] apply exact Dirac wavefunctions of the target for
their perturbation calculations. Their method is restricted
by a slow convergence behaviour of a multipole expansion
to γ values not too high, but is still applicable in our
case at γFT = 12.6 (FT stands for fixed target). Ionescu
and Eichler [19] use Sommerfeld-Maue functions for the
target continuum states. This approximation should be
taken with care for lower continuum energies of the pro-
duced pairs where, at least still for γFT = 12.6, the cross-
sections differential in the produced particles are large.
The last column is extracted from the paper of Eby [20],
who completed the early work of Racah [21]. They use free
Dirac waves and the fields of both nuclei, projectile and
target, as perturbation. Correspondingly the lowest order
perturbation is the second order, as it is also the case with
the free wavepackets of this paper. The perturbative re-
sults underestimate the experimental cross-sections. This
behaviour is a signature for the non-perturbative charac-
ter of the free pair production at small impact parameters.

We should mention that, within our finite basis set,
perturbative calculations are easy to perform by solving
the coupled channel equations successively. This has been
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Fig. 3. Time development of the created electron positron
pairs in Au79+ (10.8 GeV/u) on Au79+ collisions at an impact
parameter b = 386 fm, obtained in first order perturbation
theory (lowest curve), by coupled channel calculations (solid
curve) and in second, third, fourth and fifth order perturbation
theory (upper curves). The first order calculation should in
principle vanish for t → ∞. The remaining value of 4 × 10−4

is the error of this calculation.

done for the given collision systems. The outcome is, that
at small impact parameters of e.g. 386 fm (the Compton
wave length of the electron), the next orders of perturba-
tion calculations deviate more and more from the fully
coupled channel result, and only for orders, which are
hopeless to consider with exact perturbation calculations,
this trend is reversed. Figure 3 shows this behaviour for
Au79+ on Au79+ at 10.8 GeV/u at an impact parameter
of b = 386 fm.

4.2 Differential angular distributions and correlations

Figures 4 and 5 show the angular distribution of the pro-
duced electrons and positrons for the symmetric system
Au79+ on Au79+ (Fig. 4) and the asymmetric system
Au79+ on Cu79+ (Fig. 5) as a function of the emission
angle ϑ with respect to the positive z-axis. The discreti-
sation of the momentum space limits our resolution in
the angle. In the histograms the emission of electrons and
positrons is collected in bins of ∆ϑ = 15◦. The collision
system Au79+ on Au79+ (Fig. 4) shows a symmetric distri-
bution both for the electrons and positrons. The produced
fermions prefer to leave the creation zone under an angle
of about 50◦ to the trajectories of the ions. We note that in
our system of reference the value of γ is 2.6. Higher γ val-
ues would lead to more pronounced angular distributions
in the forward direction. We see the same behaviour in
the system Au79+ on Cu29+ (Fig. 5), but the distribution
is now asymmetric. Smaller angles seem to be favoured.

Now we examine the correlation between the emission
angles of the produced fermions. The difference angle ϑpe
is defined as the angle between the momentum vectors of
the positron and electron. The corresponding differential
cross-section is dσ(ϑpe)/dϑpe. Just as before, the resolu-
tion of the difference angle is limited by the discretisation
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Fig. 4. The angular distributions of the produced electrons
(a) and positrons (b) in the collision Au79+ (10.8 GeV/u) on
Au79+ are shown. The gold projectile moves parallel to the pos-
itive z-axis. The angle ϑ is defined with respect to the positive
z-axis.
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of the momentum space. In Figure 6 a histogram of the dif-
ferential cross-section dσ/dϑpe is plotted for a symmetric
and asymmetric system. The distributions of both systems
are similar. The angular distribution is relatively broad.
Some tendency for angles around 90◦ may be extracted. In
the asymmetric system large angles are preferred slightly.

Figures 7 and 8 show histograms of the double dif-
ferential cross-sections d2σ/(dϑpedϑe) where ϑpe is the
difference angle between the emission directions of the
positron and electron and ϑe the emission angle of
the electron. The emission angle is chosen ϑe = 90◦
(Fig. 7) and ϑe = 0◦ (Fig. 8), i.e. transversal and par-
allel to the trajectories of the ions. If the electron is emit-
ted transversal, the positron leaves nearly in the opposite
direction (see Fig. 7). The difference angle between the
positron and electron is mainly around 160◦. The reason,
that the positron does not move in exactly the opposite
direction (difference angle 180◦), is due to the push of the
positron by the positive ion. At first glance the figures
for the symmetric case (Fig. 7a) and the asymmetric one
(Fig. 7b) are very similar. But for large angles there is a
large difference. In the Au79+ on Au79+ collision the angle
area around 180◦ is nearly empty compared to the angle
area around 160◦. This is not the case for the Au79+ on
Cu29+ system. The repulsion of the copper ion is much
weaker than the one of the gold ion allowing the positron
to move opposite to the electron.

Finally in Figure 8 we show the situation for the elec-
trons being emitted parallel to the direction of the ions.
There is no large difference between the symmetric and
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Fig. 7. The double differential cross-section d2σ(ϑpe, ϑe =
90◦)/(dϑpedϑe) for electrons emitted transversal to the ion tra-
jectories is plotted against the difference angle ϑpe between the
positron and electron. (a) Au79+ (10.8 GeV/u) + Au79+ and
(b) Au79+ (10.8 GeV/u) + Cu29+ (∆ϑ = 15◦).
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(b) Au79+ (10.8 GeV/u) + Cu29+ (∆ϑ = 15◦).
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asymmetric collision cases. The positrons prefer difference
angles around 45◦ and 135◦. The numbers on the ordinate
scale show that the probability for “longitudinal” electrons
is smaller than for “transversal” electrons.

5 Final remarks

Though it is not the topic of this paper, we would like
to add some remarks on the process of electron capture
from pair production. First, the published experimental
results for the same collision systems [14], treated in this
paper, are by more than a factor of magnitude lower than
the free-free cross-section. Second, the perturbative cal-
culations of Becker et al. [22] roughly agree with the ex-
periment. Thus, it seems that the free-free pair process
is nonperturbative at the given experimental conditions
whereas the free-bound process is already perturbative.
The reason is not quite clear and the question cannot be
finally answered without nonperturbative calculations for
the free-bound process. Such calculations have been done
by Rumrich et al. [8] for much lower collision energies of
1.2 GeV/u for the Pb+Pb system. There in fact, the cross-
section of the coupled channel calculation is 1.48 b in com-
parison to 0.30 b in perturbation theory. The experiment
of Belkacem et al. [23] with U92+ on Au at 0.96 GeV/u
yielded a cross-section of 2.19 b which is in the order of
the nonperturbative result. The screening of the target
nucleus by the target electrons has not be considered in
the perturbation calculations mentioned above. Although
this effect should not be extremely large at 10.8 GeV/u,
its outcome would be a suppression of the perturbative
results, possibly below the experiment.

Some questions could arise about the maximum mo-
mentum of 3 MeV/c used in the calculations and about the
packet width of 1 MeV/c. Again one should mention that,
in the equal speed system used, the γ values for the nuclei
are 2.6 and, therefore, the momenta of the leptons do not
exceed a value of moγc = 1.3 MeV/c by far. Further, we
made sure in test calculations that the dependence of the
creation probabilities on the lepton energies (or momenta)
decreases rapidly with the energy (or momentum) of the
leptons. Because of the much higher computational effort
by taking a packet width of 0.5 MeV/c, we only carried
out a calculation for the Au+Au system at an impact pa-
rameter b = 386 fm with this higher accuracy and found
that our results could be in error of maximally 50% for
small impact parameters. In view of this result and the
remarks on the perturbation theory already mentioned,
we must conclude that the method given in this paper is
promising, but a definite answer may need a new computer
generation.
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